International Journal of Environmental Protection          
An Open Access Journal
ISSN: 2226-6437(Print)      ISSN: 2224-7777(Online)
Frequency: Annually
Editorial-in-Chief: Prof. Kevin Mickus,
Missouri University of Science & Technology, USA.
Application of Geoelectrical Resistivity Method to the Assessment of Groundwater Pollution: A case Study of Onibu-Eja Active Open Dumpsite, Osogbo, Southwestern Nigeria
Full Paper(PDF, 14311KB)
Electrical resistivity methods using the dipole – dipole array and Schlumberger Vertical Electrical Sounding (VES) techniques were conducted at the Onibu-Eja active open Dumpsite, Osogbo, Southwestern Nigeria in assessing groundwater pollution. Eight profiles and twenty four VES station measurements were carried out in the eastern and southern accessible area of the dumpsite. The VES data were quantitatively interpreted using the partial curve matching technique and 1-D inversions with WinResist software. The dipole-dipole data were inverted into 2-D resistivity images using the DIPPRO 4.0 software. Subsurface geologic layers delineated include the topsoil (20 to 998 Ωm and 0.4 to 1.0 m thickness), clay/weathered layer (63 to 333 Ωm and 1.2 to 7.6 m thickness), weathered basement (25 to 83 Ωm and 3.0 to 27.0 m thickness) and fractured/fresh basement (31 and 16213 Ωm). The results of the VES from the geosections suggest saturated weathered basement indicative of conductive material/leachate especially in traverse TR6 where resistivity less than 35 Ωm occurred. The aquifer has hydraulic conductivity (K) range 0.326 to 0.720 m/day indicating low conductivity. The transmissivity (T) values ranged between 1.47 m2/day and 17.40 m2/day, showing that the area has low to intermediate transmissivity capacity that can meet withdrawals for local water supply. The 2-D profiles distinctly delineated subsurface layers and contamination zones were also found within the aquifer units in the study area. These zones occurred at several traverses with resistivity values less than 31 Ωm and thickness variations from 5 m to 25 m. The leachate seeped to the bottom in vertical motion as seen at the eastern part of the dump site. This could be as a result of the relative permeability of the overburden, possible linear features and the downward sloping of the bedrock topography towards the dumpsite in that area. At the southern part of the dumpsite, the leachate is inferred to migrate laterally, which could imply that the neighboring rocks are relatively porous and permeable. This migration is considered slow because there was no trace of contamination 200 m away from the dumpsite.
Keywords:Electrical Resistivity; Dipole-dipole; Leachate; Hydraulic Conductivity; Transmissivity and Contamination Zone
Author: Ugwu N.U.1, Ranganai R.T.1, Simon R.E.1, Ogubazghi G.2
1.Department of Physics, University of Botswana, P. Bag UB0704, Gaborone, Botswana
2.Eritrea Institute of Technology, Mai Nefhi, Asmara, Eritrea
  1. S. Payal, Deep Trouble: “The Hidden Threat of Groundwater Pollution”, World Watch Paper #154 ISBN: 1-878071-56-4 pp. 55, 2000.
  2. J. C Agunwamba, “Solid waste management in Nigeria: Problems and issues” Environ. Manage. New York, 22(6): 849-856, 1998.
  3. T. C. Ogwueleka, “Municipal solid waste characteristics and management in Nigeria”, Iran. J. Environ. Health. Sci. Eng., 6(3):173-180, 2009.
  4. I. S. Mukhtar, P. Abdullatif, and M. Hanafi, “Detection of groundwater pollution using resistivity imaging at Seri Petang landfill”, Malaysia. Journal of Environmental Hydrology; 8:1-8, 2000.
  5. G. Karlik and M. A. Kaya, “Investigation of Groundwater Contamination using electric and electromagnetic methods at an open waste disposal site. A case study from Ispartam Turkey. Environmental Geology, 40(6): 725- 731, 2001.
  6. L. Porsani, W.M. Filho, V. R. Ellis, J. D. Shimlis, and H. P. Moura, “The use of GRR & VES in delineating a contamination plume in a landfill site. A case study in SE Brazil”. Journal of Applied Geophysics l 55: 199-209, 2004.
  7. L. B. Osazua and N. K. Abdullahi, “Geophysics Techniques for the study of Groundwater Pollution, A Review”. Nigerian Journal of Physics, 20(1):163 – 174, 2008.
  8. D. W. Urish, “The Practical Application of Surface Electrical Resistivity to Detect of groundwater Pollution”. Groundwater, 21(2):144 – 152, 1983.
  9. F. O. Ezomo and S. O. Ifedili, “Application of Schlumberger array of Vertical Electric Sounding to detection of water bearing formation”, Journal of the Nigerian Assoc. of Mathematical Physics (NAMP), Vol. 8, 247-252, 2004.
  10. F. O. Ezomo and S. O. Ifedili, “Schlumberger array of Vertical Electrical Sounding (VES) as a useful tool for determining water bearing formation in Iruekpen, Edo state, Nigeria”; Africa Journal of Science, 9(1):2195-2203, 2006.
  11. F. O. Ezomo, “Geophysical study of Sandstones properties at Ozalla Area of Edo state, Nigeria”; Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS), 3(2):326-329, 2012.
  12. H. T. Nejad, “Geoelectric investigation of the aquifer characteristics and groundwater potential in Behbahan Azad University Farm, Khuzestan Province, Iran”. J. Applied Sci., 9:3691-3698, 2009.
  13. E. O. Joshua, O. O. Odeyemi, and O.O. Fawehinmi, “Geoelectric investigation of the groundwater potential of Moniya Area, Ibadan”. J. Geol. Min. Res., 3:54-62, 2011.
  14. B. S. Badmus and O. B. Olatinsu, “Aquifer characteristics and groundwater recharge pattern in a typical basement complex, Southwestern Nigeria”. African Journal of Environmental Science and Technology, 4 (6):328-342, 2010.
  15. L. I. Nwankwo, “2D resistivity survey for groundwater exploration in a hard rock terrain: A case study of MAGDAS observatory, UNILORIN, Nigeria”. Asian J. Earth Sci., 4:46-53, 2011.
  16. M. O. K'Orowe, M. O. Nyadawa, V.S. Singh, and D. Ratnakar, “Hydrogeophysical parameter estimation for aquifer characterisation in hard rock environments: A case study from Jangaon sub-watershed, India”. J. Oceanogr. Mar. Sci., 2: 50-62, 2011.
  17. N. N. Onu, “Estimates of the relative specific yield of aquifers from geoelectrical sounding data of the coastal plains of Southeastern Nigeria”. J. Technol. Educ. Nig., 8:69-83, 2003.
  18. N. K. Abdullahi, I. B. Osazuwa and P. O. Sule, “Application of integrated geophysical technique in the investigation of groundwater contamination: A case study of Municipal solid waste leachate”. Ozean Journal of Applied Sciences. 4:7-25, 2001.
  19. N. U. Ugwu, R. T. Ranganai, R. E. Simon, and G. Ogubazghi, “Geoelectric Evaluation of Groundwater Potential and Vulnerability of Overburden Aquifers at Onibu‐Eja Active Open Dumpsite, Osogbo, Southwestern Nigeria”. Journal of Water Resource and Protection, 8, 311‐32, 2016.
  20. M. H. Loke, “A practical guide to 2-D and 3-D surveys, 2000”.
  21. B. V. Roa, Y. S. Prasad, and K. S. Reddy, “Hydrogeophysical investigations in a typical Khondalitic terrain to delineate the kaolinised layer using resistivity imaging”, Journal Geological Society of India 81:521-530, 2013.
  22. R. Hoffmann and P. Dietrich, “An approach to the determine equivalence solutions to the geoelectrical 2D inversion problem”. Journal of Applied Geophysiscs, 56:79-91, 2004.
  23. M. A. Meju, “Geoelectrical investigation of old/abandoned, covered landfill sites in urban areas: model development with a genetic diagnosis approach”. Journal of Applied Geophysics, 44(2-3), 115-150, 2000.
  24. S. Bayode, M. O. Olorunfemi, and J. S. Ojo, “Integrated geolectric and hydrochemical investigation for environmental impact assessment of the area around some ancient dumpsites in Akure metropolis, Southwestern Nigeria”. Pacific Journal of Science and Technology, 13(1):700-713, 2012.
  25. E. A. Adebayo, M. O. Ariyibi, G. C. Awoyemi, and A.S. Onyedim, “Delineation of contamination plumes at Olubonku dumpsite using geophysical and geochemical approach at Ede Town, Southwestern Nigeria”, Geosciences, 5(1): 39-45, 2015.
  26. E. M. Shemang, K. Mickus, and M. P. Same, “Geophysical characterization of the Abandoned Gaborone Landfill, Botswana: Implications for Abandoned Landfills in Arid Environments”. International Journal of Environmental Protection, 1 (1):1-12, 2011.
  27. M. Kottek, J. Grieser, C. Beck, B. Rudolf, and F. Ru, “World map of the Köppen-Geiger climate classification updated”. Meteorologische Zeitschrift, 15(3):259-263, 2006.
  28. M. A. Rahaman, “Review of the basement geology of southwestern Nigeria”: In Geology of Nigeria (Kogbe CA Ed.). Elizabeth Publishing. Co. Nigeria, pp 41-58, 1989.
  29. R. Taylor and A. Allen, “Nature and subject in Landfill, Impact problem” (Memorandum), 2001.
  30. M. H. Loke “A practical guide to 2-D and 3-D surveys”, 2000.
  31. W. M. Telford, L. P. Geldart, R. E. Sheriff, and D. A. Keys, “Applied Geophysics” (Second Edition). Cambridge University Press: Cambridge, UK. 344- 536, 1990.
  32. D. H. Griffiths and R. D. Barker “Two-dimensional resistivity imaging and modeling in areas of complex geology”, Journal of Applied Geophysics 29:21-26, 1993.
  33. W. Zhou, B. F. Beck, and J. B. Stephenson, “Reliability of dipole-dipole electrical resistivity tomography for defining depth to bedrock in covered karst terranes”. Environmental Geology 39 (7), 2000.
  34. Dippro (2000) Dippro for Windows Version 4.0 Processing and Interpretation software for Dipole – Dipole electrical resistivity data. KIGAM, Daejon, South Korea.
  35. M. H. Loke, and R. D. Baker, “Rapid Least Squares Inversion of Apparent Resistivity Pseudosection using a Quasi–Newton Method”. Geophysical Prospecting. 44:131 – 152, 1996.
  36. M. H. Loke and R. D. Baker, “Practical Techniques for 3D Resistivity Surveys and Data Inversion”. Geophysical Prospecting. 44:499 – 523, 1996 b.
  37. S. H. Ward, “Resistivity and induced polarization methods”: in Geotechnical and Environmental Geophysics, Vol. 1, Ward, S. H., ed: Society of Exploration Geophysicists, 1990.
  38. T. N. Hadi, “Geoelectric Investigation of the Aquifer Characteristic and Groundwater Potential in Behbahan Azad University Farm, Khuzestan Province, Iran”. Journal of Applied Sciences, ISSN 1812-5654, 2009. Asian Network for Scientific Information.
  39. R. Dhakate and V. S. Singh, “Estimation of hydraulic parameters from surface geophysical methods, kaliapani ultramafic Complex, Orissa, India”. Journal of Environmental Hydrology, 13(12):1-11, 2005.
  40. A. S. Arabi, J. Raimi, A. A. Ibrahim, B. B. M. Dewu, and A. M. Muhammad, “Evaluation of Aquifer Potentials for Irrigation Practice in Parts of the Basement Complex of North-Central Nigeria”. British Journal of Applied Science & Technology 1(4): 181-189, 2011.
  41. D. N. Obiora, J. C. Ibuot, and N. J. George, “Evaluation of aquifer potential, geoelectric and hydraulic parameters in Ezza North, southeastern Nigeria, using geoelectric sounding”. Int. J. Environ. Sci. Technol. 13:435–444, 2016. DOI 10.1007/s13762-015-0886-y
  42. K. P. Singh, “Nonlinear estimation of aquifer parameters from surficial resistivity measurements”: Hydrology and Earth System Sciences Discussions (HESSD), 2, 917-923, 2005.
  43. S. Niwas and D. C. Singhal, “Estimation of aquifer transmissivity from Dar-Zarrouk parameters in porous media”. Journal of Hydrology, 50: 393-399, 1981.
  44. A. I. Olayinka and C. N. C. Mbachi, “A technique for the interpretation of electrical sounding from crystalline basement Areas of Nigeria”. Journal of Mining and Geology 27: 63-69, 1992.
  45. Olayinka A. I, Akpan E. J., and Magbagbeola O. A., “Geoelectric sounding for estimating aquifer potential in the crystalline basement area around Shaki, Southwest Nigeria”, Water Resources 8(1, 2):71- 81, 1997.
  46. E. P. Wright, “The hydrogeology of crystalline basement aquifers in Africa”. Geological Society, London, special Publications, 66:1-27, 1992.
  47. A. O. Adelusi, A. A. Akinlalu, and A. I. Nwachukwu, “Integrated geophysical investigation for post-construction studies of buildings around School of Science area, Federal University of Technology, Akure, Southwestern, Nigeria”. International Journal of Physical Science, 8 (15):657-669, 2013.
  48. L. O. Ademilua and M. O. Olorunfemi, “Further Reflections on Computer Modelling for Detectability Assessment of the Transition Zone in the Basement Complex Terrain of Southwest Nigeria”. The Pacific Journal of Science and Technology, 12 (1): 435-471, 2011.
  49. A. C. Oyelami, A. O. Ojo, J. A. Aladejana, and O.O Agbede, “Assessing the Effect of a Dumpsite on Groundwater Quality: A Case Study of Aduramigba Estate within Osogbo Metropolis”. Journal of Environment and Earth Science, 3(1): 2224-3216, 2013.
  50. A. O. Ojo, C. A. Oyelami, and A. O. Adereti, “Hydro-geochemical and Geophysical Study of Groundwater in the Suburb of Osogbo, South Western Nigeria”. J Earth Sci Clim Change 5:205, 2014. doi:10.4172/2157-7617.1000205
  51. D. Kumar, “Efficacy of electrical resistivity tomography technique in mapping shallow subsurface anomaly”, Journal Geological society of India. 80:304-307, 2012.
  52. A. Jayeoba and M. A. Oladunjoye, “2-D Electrical Resistivity Tomography for Groundwater Exploration in Hard Rock Terrain”. International Journal of Science and Technology, 4(4), 2015.
  53. I. F. Louis, F. I. Louis, and A. Grambes, “Exploring for favourable Groundwater conditions in hard Rock Environments by Resistivity imaging methods: Synthetic Simulation Approach and case study example”, International Conference on Earth’s Sciences and Electronics. Special issue, 1-4, 2002.
  54. T. B. Omosehin, “Geoelectric delineation of aquifers and assessment of their vulnerability in Idanre, Southwestern Nigeria. Unpublished M. Tech. thesis, Federal University of Tech., Akure, Nigeria”. P83, 2008.
  55. J. Krasny, “Classification of Transmissivity Magnitude and Variation”, Ground Water, 31(2), 1993.
  56. R. Barke, R. Venkatewara, and M. Thangarajan, “Delineation of contaminant zone through electrical imaging technique”. Current Science, 81(3): 277-283, 2001.
  57. K. Srinivasamoorthy, V. S. Sarma, M. Vasantavigar, K. Vijayaraghavan, S. Chidambaram, and R. Rajivganthi, “Electrical imaging techniques for groundwater pollution studies: A case study from Tamil Nadu State, South India”. Earth Sci. Res. J., 13(1):30-39, 2006.
  58. N. Yalo, M. Lawson, and C. Adihou, “Geophysical contribution for the mapping the contaminant plume of leachate from Rubbish dumpsite of Hevie, Benin. British. J. of Applied Science and Tech., 4(1):127-143, 2014.
  59. S. I. Jegede, I. B. Osazuwa, O. Ujuanbi, and C. C. Chiemeke, “2D electrical imaging survey for situation assessment of leachate plume migration at two waste disposal sites in the Zaria basement complex”; Advances in Applied Science Research, Pelagia Research Library, 2 (6):1-8, 2011.
  60. S. O. Ariyo, K. O. Omosanya, and B. A. Oshinloye, “Electrical resistivity imaging of contaminant zone at Sotubo dumpsite along Sagamu-Ikorodu Road, Southwestern Nigeria”. African Journal of Environmental Science and Technology, 7(5):312-320, 2013.
  61. V. Iliceto and G. Morelli, “Environmental assessment of municipal waste dump sites with electrical resistivity and induced polarization multielectrode methods”, 5th European Meeting of Environmental and Engineering Geophysics, Budapest, 1999.
  62. T. Dahlin, H. Rosqvist, and V. Leroux, “Resistivity-IP mapping for landfill applications”. First Break, 28:101-105, 2010.
  63. R. F. Corwin, “The self-potential method for environmental and engineering applications, in Ward, S.W.”, Geotechnical and environmental geophysics, v.I:127-145, 1990.
  64. J. K. Mitchell, L. Alvarez-Cohen, E. Atekwana, S.E. Burns, R. B. Gilbert, E. Kavazanjian, W. H. O’Riordan, R. K. Row, C. D. Shackelford, H. D. Sharma, and N. Yesiller, “Assessment of the performance of engineered waste containment barriers”. Report of the Committee to Assess the Performance of Engineered Barriers to National Research Council of the U.S. National Academies, ISBN-13:978-0-309-10809-6, 2007.
  65. R. K. Rowe, “Long-term performance of contaminant barrier systems”, 45th Rankine lecture. Geotechnique 55(9):631–678, 2005. doi:10.1680/geot.2005.55.9.631
  66. R. K. Rowe, “Short and long-term leakage through composite liners”, The 7th Arthur Casagrande lecture. Can Geotech J. 49(2):141–169, 2012.
  67. A. Allen and R. Taylor, “Waste disposal and landfill: control and protection”. In: Schmoll, O and Howard Gand Chilton, J and Chorus, I, (eds.) Protecting Groundwater for Health: Managing the Quality of Drinking-water Sources. IWA: London, 2006.