International Journal of Environmental Protection          
An Open Access Journal
ISSN: 2226-6437(Print)      ISSN: 2224-7777(Online)
Frequency: Annually
Editorial-in-Chief: Prof. Kevin Mickus,
Missouri University of Science & Technology, USA.
Optimization Models of Organic Solid Waste: Review Article
Full Paper(PDF, 296KB)
Abstract:
This paper presents a review of the use of organic solid waste models in the years 2010-2014 with the support matrix for the identification of technical and economic models’ variables. Similarly, an optimization methodology is identified through the use of a mathematical linear programming approach as a tool for decision-making scenarios of waste management and energy systems.
Keywords:Optimization Model; Linear Programming; Aerobic Composting; Anaerobic Digestion; Vermiculture; Biofertilizers
Author: Solanyi Castañeda Torres1, Juan Pablo Rodríguez Miranda2, Cesar Augusto García Ubaque3
1.Sustainable Development and Environmental Management, Universidad Distrital Francisco José de Caldas, Bogotá, D.C., Colombia
2.Faculty of the Environment and Natural Resources, Universidad Distrital Francisco José de Caldas Bogotá, D.C., Colombia
3.Faculty of Technology, Universidad Distrital Francisco José de Caldas, Bogotá, D.C., Colombia
References:
  1. Gardner G. (2012), Municipal Solid Waste Growing. Worldwatch Vital Signs, Retrieved on 2nd April 2013 from: http://vitalsigns.worldwatch.org/vs-trend/ municipal-solid-waste-growing.
  2. Kumar Awasthi M., Kumar Pandey A., Khan J., Singh Bundela P., W.C. Wong J., & Selvam A. , Evaluation of thermophilic fungal consortium for organic municipal solid waste composting, Bioresource Technology, 1, 2014.
  3. Kumar Srivastava A., & Nemab A., Fuzzy parametric programming model for multi-objective integrated solid waste management under uncertainty, Expert Systems with Applications 39, 4657–4678, 2012.
  4. Onu-Habitat, Estado de las Ciudades de America Latina y el Caribe , Rumbo a una nueva transición urbana, 2012
  5. Ting Tan S., Tin Lee C., Shin Ho W., & Shiun Lim J., Optimal process network for municipal solid waste management in Iskandar Malaysia, Journal of Cleaner Production, 48 – 58, 2014.
  6. Pires A., Martinho G., & Chang N.-B., Solid waste management in European countries: A review of systems analysis techniques. Journal of Environmental Management, 1033 – 1050, 2011.
  7. Carrere H., Dumas C., Battimelli A., Batsone D., & Steyer J., Pretreatment methods to improve sludge anaerobic degradability: a review, J Hazard Mater, 1 – 15, 2010.
  8. Sharmaa P., Vloskyb R., & Romagnolia J., Strategic value optimization and analysis of multi-product biomass refineries with multiple stakeholder considerations, Computers and Chemical Engineering, 105– 129, 2013.
  9. Cunha Marques R., Ferreira da Cruz N., & Carvalho P., Assessing and exploring (in) efficiency in Portuguese recycling systems using non-parametric methods, Resources, Conservation and Recycling, 34 – 43, 2012.
  10. Sspd. (2008). Diagnostico Sectorial de Plantas de Aprovechamiento de Residuos Sólidos, Documento de Superintendencia de Servicios Públicos Domiciliarios, 2.
  11. Srivastava A., & Nemab A., Fuzzy parametric programming model for multi-objective integrated solidwaste management under uncertainty, Expert Systems with Applications, 4657–4678, 2012.
  12. Illa J., & Sole-Maur F., Modeling the composting process: coupling physical and biological processes. In: Huerta, O., Lopez, M., Martinez, F. (Eds.), Proceso y destino del compost, formación, información e interrelaciones entre los agentes del sector, Red Española de Compostaje, Spain, 2008.
  13. Rentizelas A., & Georgakello D., Incorporating life cycle external costin optimization of the electricity generation mix, Energy Policy, 134 – 149, 2014.
  14. Juul N., Münster M., Ravn H., & Ljunggren M., Challenges when performing economic optimization of waste treatment: A review, Waste Management, 1918–1925, 2013.
  15. Minoglou M., & Komilis D., Optimizing the treatment and disposal of municipal solid wastesusing mathematical programming—A case study in a Greek region, Resources, Conservation and Recycling, 46– 57, 2013.
  16. Jones P., & Salter A., Modelling the economic so ffarm-based anaerobic digestion in a UK whole - farm context. Energy Policy, 215–225, 2013.
  17. Tralhão L., Coutinho-Rodrigues J., & Alçada-Almeida L., A multiobjective modeling approach to locate multi-compartment containers for urban-sorted waste. Waste Management, 2418–2429, 2010.
  18. Amiri S., Henning D., & Karlsson B., Simulation and introduction of a CHP plant in a Swedish biogas system. Renewable Energy, 242 – 249, 2010.
  19. Casas O., López M., Quílez M., Martinez-Farre X., Hornero G., Rovira C., y otros., Wireless sensor network for smart composting monitoring and control, Measurement, 483–495, 2014.
  20. Cucek L., Sabev Varbanov P., Jaromír Klemes J., & Kravanja Z., Total footprints-based multi-criteria optimisation of regional biomass energy supply chains, Energy, 135 – 145, 2012.
  21. Zhu H., & Huang G., SLFP: A stochastic linear fractional programming approach for sustainable waste management, Waste Management, 2612–2619, 2011.
  22. Keirstead J., Samsatli N., Pantaleo A., & Shah N., Evaluating biomass energy strategies for a UK eco-town with an MILP optimization model, biomass and bioenergy, 306 – 316, 2012.
  23. Rizwana M., Lee J., & Ganib R., Optimal processing pathway for the production of biodiesel from microalgal biomass: A superstructure based approach, Computers and Chemical Engineering, 305– 314, 2013.
  24. Deka H., Deka S., Baruah C., Das J., Hogue S., & Sarma N., Vermicomposting of distillation waste of citronella plant (Cymbopogon winterianus Jowitt.), Bioresource Technology, 6944 – 6950, 2011.
  25. Kravanja Z., & Cucek L., Multi-objective optimisation for generating sustainable solutions considering total effects on the environment, Applied Energy, 67–80, 2013.
  26. Cuceka L., Drobezb R., Pahorc B., & Kravanjaa Z., Sustainable synthesis of biogas processes using a novel concept of eco-profit, Computers and Chemical Engineering, 87– 100, 2012.
  27. Van Dyken, S., Bakken, B., & Skjelbr, H., Linear mixed-integer models for biomass supply chains with transport, storage and processing, Energy, 1338–1350, 2010.
  28. Yue, D., & You, F., Sustainable scheduling of batch processes under economic and environmental criteria with MINLP models and algorithms, Computers and Chemical Engineering, 44 – 59, 2013.
  29. Kravanja Z., & Cucek L., Multi-objective optimisation for generating sustainable solutions considering total effects on the environment, Applied Energy, 67–80, 2013.
  30. Ariunbaatar J., Antonio P., Esposito G., Pirozzi F., & N. L P., Pretreatment methods to enhance anaerobic digestion of organic solid waste, Applied Energy, 143–156, 2014.
  31. Li Y., & Huang G., An interval-based possibilistic programming method for waste management with cost minimization and environmental-impact abatement under uncertainty, Science of the Total Environment, 4296 – 4308, 2010.
  32. V. Toso E., & Alem D., Effective location models for sorting recyclables in public management, European Journal of Operational Research, 839–860, 2014.
  33. Antmann E., Shi X., Celik N., & Dai Y., Continuous-discrete simulation-based decision making framework for solid waste management and recycling programs, Computers & Industrial Engineering, 438 – 454, 2013.
  34. Marvin W., Schmidt L., Benjaafar S., Tiffany D., & Daoutidis P, (2010). Economic Optimization of a Lignocellulosic Biomass- to - Ethanol Supply Chain, Chemical Engineering Science, 68–79, 2010.
  35. Fazlollahi S., & François M., Multi-objective, multi-period optimization of biomass conversion technologies using evolutionary algorithms and mixed integer linear programming (MILP), Applied Thermal Engineering, 1504 – 1513, 2013.
  36. Gebrezgabhera S., Meuwissena M., Prinsb B., & Oude Lansinka A., Economic analysis of anaerobic digestion—A case of Green power biogas plant in The Netherlands, NJAS -Wageningen Journal of Life Sciences, 109–115, 2010.
  37. Carvalho M., Serra L., & Lozano M., Optimal synthesis of trigeneration systems subject to environmental constraints, Energy, 3779 – 3790, 2011.
  38. Cambero C., & Sowlati T., Assessment and optimization of forest biomass supply chains from economic, social and environmental, Renewable and Sustainable Energy Reviews, 62–73, 2014.
  39. Nakata T., Silva D., & Rodionov M., Application of energy system models for designing a low-carbon society, Progress in Energy and Combustion Science, 462- 502, 2011.
  40. Wen-cong L., Yong-xi M., & Bergmann H., Technological Options to Ameliorate Waste Treatment of Intensive Pig Production in China: An Analysis Based on Bio-Economic Model, Journal of Integrative Agriculture, 443-454, 2014.
  41. Srivastava A., & Nemab A., Fuzzy parametric programming model for multi-objective integrated solidwaste management under uncertainty, Expert Systems with Applications, 4657–4678, 2012.
  42. Shen Z., Zhong S., Wang Y., Wang B., Mei X., Li R., y otros., Induced soil microbial suppression of banana fusarium wilt disease using compost and biofertilizers to improve yield and quality, European Journal of Soil Biology, 1 – 8, 2013.
  43. Safarian S., Saboohi Y., & Kateb M., Evaluation of energy recovery and potential of hydrogen production in Iranian natural gas transmission network, Energy Policy, 65–77, 2013.