International Journal of Environmental Protection          
An Open Access Journal
ISSN: 2226-6437(Print)      ISSN: 2224-7777(Online)
Frequency: Annually
Editorial-in-Chief: Prof. Kevin Mickus,
Missouri University of Science & Technology, USA.
Using Extracellular Enzyme Activity as a Pollutant Indicator: a Field Study in Chinchiná River, Caldas – Colombia
Full Paper(PDF, 1040KB)
The present study investigated the existence of a relationship between Extracellular Enzyme Activity (EEA) of glucosidase and alkaline phosphatase and pollution by carbon and phosphorous at five stations on the Chinchiná River in the water main and the biofilm (epilithon/episammon) during three seasons (rainy, dry and transition). Specific substrates were used as sources: 4-Nitrophenyl-β-D-Glucopyranose as a carbon source and 4-Nitrophenylphosphate as a phosphorus source. The product of catalysis (4-nitrophenol) was detected spectrophotometrically at an emission of 405nm. The ratio of EEA to temperature and pH was also determined. All sampling stations displayed EEA; however, reported results were higher for phosphatase, specifically in the biofilm, in all seasons; this indicates that certain associated microorganisms in this matrix can act as a multi-enzyme system which allows for easy disposal of substrate and the presence of catalysis. A relationship could not be established to describe EEA in dissolved organic carbon (DOC), because EEA was not detected in water samples from all stations during the three sampling seasons (E1, E2 and E4), because the bioavailability of nutrients attributed to the discharge of domestic wastewater from the municipalities of Manizales and Villamaría. Additionally, the complexity of the links between the monosaccharides which comprise polymers affects the degradation rate of the material, since the enzymes produced by microorganisms in the water prefer to hydrolyze specific regions (regiospecific) of the molecule. Enzyme activity can be affected by the structure of the polysaccharide being degraded. Therefore, some trends, such as those which occur at lower DOC concentrations, exhibit greater EEA. During the dry season, a correlation was found between phosphatase and glucosidase EEA in samples of water related to the concentration of orthophosphates and filtered COD, respectively. This indicates that higher concentrations of orthophosphates result in higher EEA of the phosphatase, and that higher concentrations of CODs result in higher EEA of the glucosidase.
Keywords:Alkaline Phosphatase; Extracellular Enzyme Activity; Epilithon; Glucosidase; Nitrophenol; Chinchiná River
Author: Marco Tulio Jaramillo Salazar1, Néstor Jaime Aguirre Ramírez2, Jhon Henry Galvis García1
1.Faculty of Natural Sciences, University of Caldas, GEAAS Group, Manizales, The Republic of Colombia
2.Faculty of Engineering, University of Antioquia, GEOLIMNA Group, Medellín, The Republic of Colombia
  1. S. Álvarez, “La descomposición de materia orgánica en humedales: La importancia del componente microbiano”, Ecosistemas, vol. 14 (2), pp. 17-29, 2005.
  2. M. A. Moran and R. E. Hodson, “Bacterial production on humic and nonhumic components of dissolved organic carbon”, Limnology and Oceanography, vol. 35, pp. 1744-1756, 1990.
  3. L. J Tranvik, E. B. Sherr and B. F. Sherr, “Uptake and utilization of colloidal DOM by heterotrophic flagellates in sea water”, Marine Ecology Progress Series, vol. 92, 301-309, 1993.
  4. C. M. Denward and L. J. Tranvik, “Effects of solar radiation on aquatic macrophyte litter decomposition”, Oikos, vol. 82, 51-58, 1998.
  5. U. Münster and R. J Chróst, Origin, composition and microbial utilization of organic matter, Aquatic Microbial Ecology: Biochemical and Molecular Approaches, Overbeck, J, R. J Chróst, Editores, 1990.
  6. U. Münster and H. De Haan, “he Role of Microbial Extracellular Enzymes in the Transformations of Dissolved Organic Matter in Humic Waters, Aquatic Humic Substances, Hessen, D. O. & L. J. Tranvik Editores, Berlin-Heidelberg, 1998.
  7. R. M. W. Amon and R. Benner, “Bacterial Utilization of Different Size Classes of Dissolved Organic Matter”, Limnology and Oceanography, vol. 41, pp. 41-51, 1996.
  8. R. J. Chróst, Environmental control of the synthesis and activity of aquatic microbial ectoenzymes, Chróst R. J. editors, New York. 1991.
  9. M. Weiss, U. Abele, J. Weckesser, W. Welte, E. Schiltz and G. Schulz, “Molecular architecture and electrostatic properties of a bacterial porin”, Science, vol. 254, pp. 1627-1630, 1991.
  10. A. Cunha, A. Almeida, F. J. R. C. Coelho, N. C. M. Gomes, V. Oliveira and L. Santos, Bacterial Extracellular Enzymatic Activity in Globally Changing Aquatic Ecosystems, Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, A Mendez-Vilas, 2010.
  11. H. G. Hoppe, Microbial extracellular enzyme activity: a new key parameter in aquatic ecology, Chróst R. J. editors, New York. 1991.
  12. L. A Meyer-Reil, Ecological aspects of enzymatic activity in marine sediments, Chróst, R. J. Editors. New York. 1991.
  13. R. J. Chróst, “Significance of bacterial ectoenzymes in aquatic environments”, Hydrobiology, vol. 244; pp. 61-70. 1992.
  14. T. E. Barman, Enzyme handbook, Berlin, New York, 1969.
  15. M. Vidal, C. M. Duarte, S. M. Agusti and D. Vaque, “Alkaline phosphatase activities in the central Atlantic Ocean indicate large areas with phosphorus deficiency”, Marine Ecology Progress Series vol. 262, pp. 43-53, 2003.
  16. R. J. Chróst & W. Siuda, Ecology of Microbial Enzymes in Lake Ecosystems, Burns, R. C. & Dick, R. P. Eds, New York, 2002.
  17. J. Feder, The phosphatases, Griffith, E. J., Benton, A., Spencer, J. M. & Mitchell, D. T. Editors, New York, 1973.
  18. H. G. Hoppe, Phosphatase activity in the sea. Hydrobiologia, vol. 493, pp. 187-200, 2003.
  19. H. G. Hoppe, Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates, Marine Ecology Progress Series, vol.11, pp. 299–308, 1983.
  20. CORPOCALDAS-PROAGUA, Caracterización y evaluación biológica de la calidad del agua en la subcuenca del río Chinchiná". (en) Ordenamiento del uso del agua en la subcuenca del río Chinchiná localizada entre los municipios de Manizales, Villamaría, Chinchiná, Neira y Palestina - Dpto. de Caldas. Convenio CORPOCALDAS-PROAGUA C087-2004. Pp. 165, 2005.
  21. APHA, AWWA and WEF. Standard Methods for the Examination of Water and Wastewater, Ed. 21, American Public Health Association, Washington, 2005.
  22. J. Marxsen, P. Tippmann, P. Heininger, G. Preuss and A. Rende, Mikrobiologische Charakterisierung Aquatischer Sedimente-Methodensammlung. Enzymatikaktivität, pp. 87-114, 1998.
  23. M. T. Madigan, J. M. Martinko and J. Parker, Brock: Biología de los Microorganismos, Pearson Prentice Hall editores, Madrid, 2003. (In Spanish).
  24. G. Roldán & J. Ramírez. Fundamentos de limnología neotropical, Ed. Universidad de Antioquia. Ciencia y Tecnología. Medellín, Colombia, pp. 440, 2008.
  25. A. Spitzy & Leenher J. Dissolved Organic Carbon in Rivers, In: E. T. Degens & S. J. E. Demp (Eds.). Biogeochemistry of Major World Rivers, Scope 42, John Wiley & Sons, Chinchester, pp. 213-232,1990.
  26. P. J. Depetris & J. E. Paolini, Biogeochemical Aspects of South American Rivers: The Paraná and the Orinoco, In: E. T. Degens & S. J. E. Demp (Eds.), Biogeochemistry of Major World Rivers, Scope Report 42, John Wiley & Sons, Chinchester, pp. 165-194, 1990.
  27. L. C. Giraldo, C.A. Palacio and N.J. Aguirre, “Temporal Variation of the Extracellular Enzymatic Activity (EEA): Case of Study: Aburra-Medellín River”, Valle de Aburrá in Medellin, Antioquia, Colombia, International Journal of Environmental Protection, vol. 4, pp. 58-67, 2014.
  28. W. Siuda, “Phosphatases and their role in organic phosphorus transformation in natural waters: A review”, Polskie Archivium Hydrobiologii, vol. 31, pp. 207-233, 1984.
  29. H. G. Hoppe, S. J. Kim and K. Gocke, “Microbial Decomposition in Aquatic Environments: Combined Process of Extracellular Enzyme Activity and Substrate Uptake”, Applied and Enviromental Microbiology, vol. 54, pp. 784-790, 1988.
  30. E. Pohlon, J. Marxsen and K. Kirsten Küsel, Pioneering Bacterial and Algal Communities and Potential Extracellular Enzyme Activities of Stream Biofilms, 2009.
  31. O. Koch, D. Tscherko and E. Kandeler, “Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils”, Global Biogeochemical Cycles, vol. 21, pp. GB4017, 2007.
  32. U. L. Zweifel, “Factors Controlling Accumulation of Labile Dissolved Organic Carbon in the Gulf of Riga”, Estuarine, Coastal and Shelf Science, vol. 48, pp. 357-370, 1999.
  33. L. R. Pomeroy and W. J. Wiebe, “Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria”, Aquatic Microbial Ecology, vol. 23, pp. 187-204, 2001.
  34. J. Loveland, K. Gutshall, J. Kasmir, P. Prema and J. E. Brenchley, “Characterization of psychrotrophic microorganisms producing β-galactosidase activities”, Applied and Enviromental Microbiology, vol. 60, pp. 12-20, 1994.
  35. A. B. Patel, K. Fukami & T. Nishijima, “Regulation of seasonal variability of aminopeptidase activities in surface and bottom waters of Uranouchi Inlet, Japan”, Aquatic Microbial Ecology, vol. 21, pp. 139-149, 2000.